Superhydrophobic behavior of a perfluoropolyether lotus-leaf-like topography.

نویسندگان

  • Lei Zhang
  • Zhilian Zhou
  • Bin Cheng
  • Joseph M Desimone
  • Edward T Samulski
چکیده

We demonstrate the fabrication of 2-D arrays of nanopillars made from perfluoropolyether derivatives using a porous anodic aluminum oxide membrane as a template. Pretexturing the aluminum prior to anodization enables one to engineer multiple morphological length scales and thereby synthesize a lotus-leaf-like topography. Both nanopillars on a flat surface and on a lotus-leaf-like topology exhibit superhydrophobicity, low contact angle hysteresis, and self-cleaning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superhydrophobic surfaces developed by mimicking hierarchical surface morphology of lotus leaf.

The lotus plant is recognized as a 'King plant' among all the natural water repellent plants due to its excellent non-wettability. The superhydrophobic surfaces exhibiting the famous 'Lotus Effect', along with extremely high water contact angle (>150°) and low sliding angle (<10°), have been broadly investigated and extensively applied on variety of substrates for potential self-cleaning and an...

متن کامل

Superhydrophobic Surfaces Created by Elastic Instability of PDMS

Lotus flowers, rose petals, some plant leaves and insects have a naturally super-hydrophobic surface. In fact, the surface of a Lotus leaf is covered by micro and nano structures mixed with wax, which makes its surface superhydrophobic. In microfluidics, superhydrophobicity is an important factor in the rheometers on a chip. It is also sought in other complex fluids applications like the self-c...

متن کامل

Polycyclopentene-Crystal-Decorated Carbon Nanotubes by Convenient Large-Scale In Situ Polymerization and their Lotus-Leaf-Like Superhydrophobic Films.

In situ Pd-catalyzed cyclopentene polymerization in the presence of multi-walled carbon nanotubes (MWCNTs) is demonstrated to effectively render, on a large scale, polycyclopentene-crystal-decorated MWCNTs. Controlling the catalyst loading and/or time in the polymerization offers a convenient tuning of the polymer content and the morphology of the decorated MWCNTs. Appealingly, films made of th...

متن کامل

Hierarchically structured superhydrophobic flowers with low hysteresis of the wild pansy (Viola tricolor) – new design principles for biomimetic materials

Hierarchically structured flower leaves (petals) of many plants are superhydrophobic, but water droplets do not roll-off when the surfaces are tilted. On such surfaces water droplets are in the "Cassie impregnating wetting state", which is also known as the "petal effect". By analyzing the petal surfaces of different species, we discovered interesting new wetting characteristics of the surface ...

متن کامل

Fabrication of biomimetic superhydrophobic surfaces inspired by lotus leaf and silver ragwort leaf.

Inspired by the self-cleaning lotus leaf and silver ragwort leaf, here we demonstrate the fabrication of biomimetic superhydrophobic fibrous mats via electrospinning polystyrene (PS) solution in the presence of silica nanoparticles. The resultant electrospun fiber surfaces exhibited a fascinating structure with the combination of nano-protrusions and numerous grooves due to the rapid phase sepa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 22 20  شماره 

صفحات  -

تاریخ انتشار 2006